Math@Funny@Honey@Money

أسرة الموقع ترحب بك و نتمنى أن تكون بتمام الصحة و العافيه

انضم إلى المنتدى ، فالأمر سريع وسهل

Math@Funny@Honey@Money

أسرة الموقع ترحب بك و نتمنى أن تكون بتمام الصحة و العافيه

Math@Funny@Honey@Money

هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.
Math@Funny@Honey@Money



2 مشترك

    اخيرا موضوع رياضى vector space

    teacher
    teacher
    ناظر
    ناظر


    ذكر
    عدد الرسائل : 439
    العمر : 37
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood : اخيرا موضوع رياضى vector space 7adnb6
    الأوسمة : اخيرا موضوع رياضى vector space 68238983oi3sk3
    تاريخ التسجيل : 05/04/2008

    m12 اخيرا موضوع رياضى vector space

    مُساهمة من طرف teacher السبت 05 يوليو 2008, 9:12 pm

    Vector space,
    linear space, over a field اخيرا موضوع رياضى vector space V0965201

    An Abelian group اخيرا موضوع رياضى vector space V0965202, written additively, in which a multiplication of the elements by scalars is defined, i.e. a mapping
    اخيرا موضوع رياضى vector space V0965203
    which satisfies the following axioms (اخيرا موضوع رياضى vector space V0965204; اخيرا موضوع رياضى vector space V0965205):

    1) اخيرا موضوع رياضى vector space V0965206;

    2) اخيرا موضوع رياضى vector space V0965207;

    3) اخيرا موضوع رياضى vector space V0965208;

    4) اخيرا موضوع رياضى vector space V0965209.
    Axioms 1)–4) imply the following important properties of a vector space (اخيرا موضوع رياضى vector space V09652010):

    5) اخيرا موضوع رياضى vector space V09652011;

    6) اخيرا موضوع رياضى vector space V09652012;

    7) اخيرا موضوع رياضى vector space V09652013.
    The elements of the vector space are called its points, or vectors; the elements of اخيرا موضوع رياضى vector space V09652014 are called scalars.
    The vector spaces most often employed in mathematics and in its applications are those over the field اخيرا موضوع رياضى vector space V09652015 of complex numbers and over the field اخيرا موضوع رياضى vector space V09652016 of real numbers; they are said to be complex, respectively real, vector spaces.
    The axioms of vector spaces express algebraic properties of many classes of objects which are frequently encountered in analysis. The most fundamental and the earliest examples of vector spaces are the اخيرا موضوع رياضى vector space V09652017-dimensional Euclidean spaces. Of almost equal importance are many function spaces: spaces of continuous functions, spaces of measurable functions, spaces of summable functions, spaces of analytic functions, and spaces of functions of bounded variation.
    The concept of a vector space is a special case of the concept of a module over a ring — a vector space is a unitary module over a field. A unitary module over a non-commutative skew-field is also called a vector space over a skew-field; the theory of such vector spaces is much more difficult than the theory of vector spaces over a field.
    One important task connected with vector spaces is the study of the geometry of vector spaces, i.e. the study of lines in vector spaces, flat and convex sets in vector spaces, vector subspaces, and bases in vector spaces


    farao
    teacher
    teacher
    ناظر
    ناظر


    ذكر
    عدد الرسائل : 439
    العمر : 37
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood : اخيرا موضوع رياضى vector space 7adnb6
    الأوسمة : اخيرا موضوع رياضى vector space 68238983oi3sk3
    تاريخ التسجيل : 05/04/2008

    m12 رد: اخيرا موضوع رياضى vector space

    مُساهمة من طرف teacher السبت 05 يوليو 2008, 9:13 pm

    A vector subspace, or simply a subspace, of a vector space اخيرا موضوع رياضى vector space V09652018 is a subset اخيرا موضوع رياضى vector space V09652019 that is closed with respect to the operations of addition and multiplication by a scalar. A subspace, considered apart from its ambient space, is a vector space over the ground field.
    The straight line passing through two points اخيرا موضوع رياضى vector space V09652020 and اخيرا موضوع رياضى vector space V09652021 of a vector space اخيرا موضوع رياضى vector space V09652022 is the set of elements اخيرا موضوع رياضى vector space V09652023 of the form اخيرا موضوع رياضى vector space V09652024, اخيرا موضوع رياضى vector space V09652025. A set اخيرا موضوع رياضى vector space V09652026 is said to be a flat set if, in addition to two arbitrary points, it also contains the straight line passing through these points. Any flat set is obtained from some subspace by a parallel shift: اخيرا موضوع رياضى vector space V09652027; this means that each element اخيرا موضوع رياضى vector space V09652028 can be uniquely represented in the form اخيرا موضوع رياضى vector space V09652029, اخيرا موضوع رياضى vector space V09652030, and that this equation realizes a one-to-one correspondence between اخيرا موضوع رياضى vector space V09652031 and اخيرا موضوع رياضى vector space V09652032.
    The totality of all shifts اخيرا موضوع رياضى vector space V09652033 of a given subspace اخيرا موضوع رياضى vector space V09652034 forms a vector space over اخيرا موضوع رياضى vector space V09652035, called the quotient space اخيرا موضوع رياضى vector space V09652036, if the operations are defined as follows:



    اخيرا موضوع رياضى vector space V09652037
    Let اخيرا موضوع رياضى vector space V09652038 be an arbitrary set of vectors in اخيرا موضوع رياضى vector space V09652039. A linear combination of the vectors اخيرا موضوع رياضى vector space V09652040 is a vector اخيرا موضوع رياضى vector space V09652041 defined by an expression



    اخيرا موضوع رياضى vector space V09652042
    in which only a finite number of coefficients differ from zero. The set of all linear combinations of vectors of the set اخيرا موضوع رياضى vector space V09652043 is the smallest subspace containing اخيرا موضوع رياضى vector space V09652044 and is said to be the linear envelope of the set اخيرا موضوع رياضى vector space V09652045. A linear combination is said to be trivial if all coefficients اخيرا موضوع رياضى vector space V09652046 are zero. The set اخيرا موضوع رياضى vector space V09652047 is said to be a linearly independent set if all non-trivial linear combinations of vectors in اخيرا موضوع رياضى vector space V09652048 are non-zero.
    Any linearly independent set is contained in some maximal linearly independent set اخيرا موضوع رياضى vector space V09652049, i.e. in a set which ceases to be linearly independent after any element in اخيرا موضوع رياضى vector space V09652050 has been added to it.
    Each element اخيرا موضوع رياضى vector space V09652051 may be uniquely represented as a linear combination of elements of a maximal linearly independent set:



    اخيرا موضوع رياضى vector space V09652052

    flower
    teacher
    teacher
    ناظر
    ناظر


    ذكر
    عدد الرسائل : 439
    العمر : 37
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood : اخيرا موضوع رياضى vector space 7adnb6
    الأوسمة : اخيرا موضوع رياضى vector space 68238983oi3sk3
    تاريخ التسجيل : 05/04/2008

    m12 رد: اخيرا موضوع رياضى vector space

    مُساهمة من طرف teacher السبت 05 يوليو 2008, 9:16 pm

    A maximal linearly independent set is said to be a basis (an algebraic basis) of the vector space for this reason. All bases of a given vector space have the same cardinality, which is known as the dimension of the vector space. If this cardinality is finite, the space is said to be finite-dimensional; otherwise it is known as an infinite-dimensional vector space.
    The field اخيرا موضوع رياضى vector space V09652053 may be considered as a one-dimensional vector space over itself; a basis of this vector space is a single element, which may be any element other than zero. A finite-dimensional vector space with a basis of اخيرا موضوع رياضى vector space V09652054 elements is known as an اخيرا موضوع رياضى vector space V09652056-dimensional space.
    The theory of convex sets plays an important part in the theory of real and complex vector spaces (cf. also Convex set). A set اخيرا موضوع رياضى vector space V09652057 in a real vector space is said to be a convex set if for any two points اخيرا موضوع رياضى vector space V09652058 in it the segment اخيرا موضوع رياضى vector space V09652059, اخيرا موضوع رياضى vector space V09652060, also belongs to اخيرا موضوع رياضى vector space V09652061.
    The theory of linear functionals on vector spaces and the related theory of duality are important parts of the theory of vector spaces. Let اخيرا موضوع رياضى vector space V09652062 be a vector space over a field اخيرا موضوع رياضى vector space V09652063. An additive and homogeneous mapping اخيرا موضوع رياضى vector space V09652064, i.e.



    اخيرا موضوع رياضى vector space V09652065
    is said to be a linear functional on اخيرا موضوع رياضى vector space V09652066. The set اخيرا موضوع رياضى vector space V09652067 of all linear functionals on اخيرا موضوع رياضى vector space V09652068 forms a vector space over اخيرا موضوع رياضى vector space V09652069 with respect to the operations



    اخيرا موضوع رياضى vector space V09652070


    اخيرا موضوع رياضى vector space V09652071


    اخيرا موضوع رياضى vector space V09652072
    This vector space is said to be the conjugate, or dual, space of اخيرا موضوع رياضى vector space V09652073. Several geometrical notions are connected with the concept of a conjugate space. Let اخيرا موضوع رياضى vector space V09652074 (respectively, اخيرا موضوع رياضى vector space V09652075); the set



    اخيرا موضوع رياضى vector space V09652076
    or اخيرا موضوع رياضى vector space V09652077, is said to be the annihilator or orthogonal complement of اخيرا موضوع رياضى vector space V09652078 (respectively, of اخيرا موضوع رياضى vector space V09652079); here اخيرا موضوع رياضى vector space V09652080 and اخيرا موضوع رياضى vector space V09652081 are subspaces of اخيرا موضوع رياضى vector space V09652082 and اخيرا موضوع رياضى vector space V09652083, respectively. If اخيرا موضوع رياضى vector space V09652084 is a non-zero element of اخيرا موضوع رياضى vector space V09652085, اخيرا موضوع رياضى vector space V09652086 is a maximal proper linear subspace in اخيرا موضوع رياضى vector space V09652087, which is sometimes called a hypersubspace; a shift of such a subspace is said to be a hyperplane in اخيرا موضوع رياضى vector space V09652088; thus, any hyperplane has the form



    اخيرا موضوع رياضى vector space V09652089
    If اخيرا موضوع رياضى vector space V09652090 is a subspace of the vector space اخيرا موضوع رياضى vector space V09652091, there exist natural isomorphisms between اخيرا موضوع رياضى vector space V09652092 and اخيرا موضوع رياضى vector space V09652093 and between اخيرا موضوع رياضى vector space V09652094 and اخيرا موضوع رياضى vector space V09652095.
    A subset اخيرا موضوع رياضى vector space V09652096 is said to be a total subset over اخيرا موضوع رياضى vector space V09652097 if its annihilator contains only the zero element, اخيرا موضوع رياضى vector space V09652098.
    Each linearly independent set اخيرا موضوع رياضى vector space V09652099 can be brought into correspondence with a conjugate set اخيرا موضوع رياضى vector space V096520100, i.e. with a set such that اخيرا موضوع رياضى vector space V096520101 (the Kronecker symbol) for all اخيرا موضوع رياضى vector space V096520102. The set of pairs اخيرا موضوع رياضى vector space V096520103 is said to be a biorthogonal system. If the set اخيرا موضوع رياضى vector space V096520104 is a basis in اخيرا موضوع رياضى vector space V096520105, then اخيرا موضوع رياضى vector space V096520106 is total over اخيرا موضوع رياضى vector space V096520107.
    An important chapter in the theory of vector spaces is the theory of linear transformations of these spaces. Let اخيرا موضوع رياضى vector space V096520108 be two vector spaces over the same field اخيرا موضوع رياضى vector space V096520109. Then an additive and homogeneous mapping اخيرا موضوع رياضى vector space V096520110 of اخيرا موضوع رياضى vector space V096520111 into اخيرا موضوع رياضى vector space V096520112, i.e.



    اخيرا موضوع رياضى vector space V096520113
    is said to be a linear mapping or linear operator, mapping اخيرا موضوع رياضى vector space V096520114 into اخيرا موضوع رياضى vector space V096520115 (or from اخيرا موضوع رياضى vector space V096520116 into اخيرا موضوع رياضى vector space V096520117). A special case of this concept is a linear functional, or a linear operator from اخيرا موضوع رياضى vector space V096520118 into اخيرا موضوع رياضى vector space V096520119. An example of a linear mapping is the natural mapping from اخيرا موضوع رياضى vector space V096520120 into the quotient space اخيرا موضوع رياضى vector space V096520121, which establishes a one-to-one correspondence between each element اخيرا موضوع رياضى vector space V096520122 and the flat set اخيرا موضوع رياضى vector space V096520123. The set اخيرا موضوع رياضى vector space V096520124 of all linear operators اخيرا موضوع رياضى vector space V096520125 forms a vector space with respect to the operations



    اخيرا موضوع رياضى vector space V096520126


    اخيرا موضوع رياضى vector space V096520127
    Two vector spaces اخيرا موضوع رياضى vector space V096520128 and اخيرا موضوع رياضى vector space V096520129 are said to be isomorphic if there exists a linear operator (an "isomorphism" ) which realizes a one-to-one correspondence between their elements. اخيرا موضوع رياضى vector space V096520130 and اخيرا موضوع رياضى vector space V096520131 are isomorphic if and only if their bases have equal cardinalities.
    Let اخيرا موضوع رياضى vector space V096520132 be a linear operator from اخيرا موضوع رياضى vector space V096520133 into اخيرا موضوع رياضى vector space V096520134. The conjugate linear operator, or dual linear operator, of اخيرا موضوع رياضى vector space V096520135 is the linear operator اخيرا موضوع رياضى vector space V096520136 from اخيرا موضوع رياضى vector space V096520137 into اخيرا موضوع رياضى vector space V096520138 defined by the equation



    اخيرا موضوع رياضى vector space V096520139
    The relations اخيرا موضوع رياضى vector space V096520140, اخيرا موضوع رياضى vector space V096520141 are valid, which imply that اخيرا موضوع رياضى vector space V096520142 is an isomorphism if and only if اخيرا موضوع رياضى vector space V096520143 is an isomorphism.


    santa
    teacher
    teacher
    ناظر
    ناظر


    ذكر
    عدد الرسائل : 439
    العمر : 37
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood : اخيرا موضوع رياضى vector space 7adnb6
    الأوسمة : اخيرا موضوع رياضى vector space 68238983oi3sk3
    تاريخ التسجيل : 05/04/2008

    m12 رد: اخيرا موضوع رياضى vector space

    مُساهمة من طرف teacher السبت 05 يوليو 2008, 9:17 pm

    The theory of bilinear and multilinear mappings of vector spaces is closely connected with the theory of linear mappings of vector spaces (cf. Bilinear mapping; Multilinear mapping).
    Problems of extending linear mappings are an important group of problems in the theory of vector spaces. Let اخيرا موضوع رياضى vector space V096520144 be a subspace of a vector space اخيرا موضوع رياضى vector space V096520145, let اخيرا موضوع رياضى vector space V096520146 be a linear space over the same field as اخيرا موضوع رياضى vector space V096520147 and let اخيرا موضوع رياضى vector space V096520148 be a linear mapping from اخيرا موضوع رياضى vector space V096520149 into اخيرا موضوع رياضى vector space V096520150; it is required to find an extension اخيرا موضوع رياضى vector space V096520151 of اخيرا موضوع رياضى vector space V096520152 which is defined on all of اخيرا موضوع رياضى vector space V096520153 and which is a linear mapping from اخيرا موضوع رياضى vector space V096520154 into اخيرا موضوع رياضى vector space V096520155. Such an extension always exists, but the problem may prove to be unsolvable owing to additional limitations imposed on the functions (which are related to supplementary structures in the vector space, e.g. to the topology or to an order relation). Examples of solutions of extension problems are the Hahn–Banach theorem and theorems on the extension of positive functionals in spaces with a cone.
    An important branch of the theory of vector spaces is the theory of operations over a vector space, i.e. methods for constructing new vector spaces from given vector spaces. Examples of such operations are the well-known methods of taking a subspace and forming the quotient space by it. Other important operations include the construction of direct sums, direct products and tensor products of vector spaces.
    Let اخيرا موضوع رياضى vector space V096520156 be a family of vector spaces over a field اخيرا موضوع رياضى vector space V096520157. The set اخيرا موضوع رياضى vector space V096520158 which is the product of اخيرا موضوع رياضى vector space V096520159 can be made into a vector space over اخيرا موضوع رياضى vector space V096520160 by introducing the operations



    اخيرا موضوع رياضى vector space V096520161


    اخيرا موضوع رياضى vector space V096520162
    The resulting vector space اخيرا موضوع رياضى vector space V096520163 is called the direct product of the vector spaces اخيرا موضوع رياضى vector space V096520164, and is written as اخيرا موضوع رياضى vector space V096520165. The subspace of the vector space اخيرا موضوع رياضى vector space V096520166 consisting of all sequences اخيرا موضوع رياضى vector space V096520167 for each of which the set اخيرا موضوع رياضى vector space V096520168 is finite, is said to be the direct sum of the vector spaces اخيرا موضوع رياضى vector space V096520169, and is written as اخيرا موضوع رياضى vector space V096520170 or اخيرا موضوع رياضى vector space V096520171. These two notions coincide if the number of terms is finite. In this case one uses the notations:



    اخيرا موضوع رياضى vector space V096520172
    or



    اخيرا موضوع رياضى vector space V096520173
    Let اخيرا موضوع رياضى vector space V096520174 and اخيرا موضوع رياضى vector space V096520175 be vector spaces over the same field اخيرا موضوع رياضى vector space V096520176; let اخيرا موضوع رياضى vector space V096520177, اخيرا موضوع رياضى vector space V096520178 be total subspaces of the vector spaces اخيرا موضوع رياضى vector space V096520179, اخيرا موضوع رياضى vector space V096520180, and let اخيرا موضوع رياضى vector space V096520181 be the vector space with the set of all elements of the space اخيرا موضوع رياضى vector space V096520182 as its basis. Each element اخيرا موضوع رياضى vector space V096520183 can be brought into correspondence with a bilinear function اخيرا موضوع رياضى vector space V096520184 on اخيرا موضوع رياضى vector space V096520185 using the formula اخيرا موضوع رياضى vector space V096520186, اخيرا موضوع رياضى vector space V096520187, اخيرا موضوع رياضى vector space V096520188. This mapping on the basis vectors اخيرا موضوع رياضى vector space V096520189 may be extended to a linear mapping اخيرا موضوع رياضى vector space V096520190 from the vector space اخيرا موضوع رياضى vector space V096520191 into the vector space of all bilinear functionals on اخيرا موضوع رياضى vector space V096520192. Let اخيرا موضوع رياضى vector space V096520193. The tensor product of اخيرا موضوع رياضى vector space V096520194 and اخيرا موضوع رياضى vector space V096520195 is the quotient space اخيرا موضوع رياضى vector space V096520196; the image of the element اخيرا موضوع رياضى vector space V096520197 is written as اخيرا موضوع رياضى vector space V096520198. The vector space اخيرا موضوع رياضى vector space V096520199 is isomorphic to the vector space of bilinear functionals on اخيرا موضوع رياضى vector space V096520200 (cf. Tensor product of vector spaces).
    The most interesting part of the theory of vector spaces is the theory of finite-dimensional vector spaces. However, the concept of infinite-dimensional vector spaces has also proved fruitful and has interesting applications, especially in the theory of topological vector spaces, i.e. vector spaces equipped with topologies fitted in some manner to its algebraic structure.


    jocolor
    teacher
    teacher
    ناظر
    ناظر


    ذكر
    عدد الرسائل : 439
    العمر : 37
    Location : Egypt
    Job/hobbies : learner
    Skills/Courses : egypt
    Mood : اخيرا موضوع رياضى vector space 7adnb6
    الأوسمة : اخيرا موضوع رياضى vector space 68238983oi3sk3
    تاريخ التسجيل : 05/04/2008

    m12 references

    مُساهمة من طرف teacher السبت 05 يوليو 2008, 9:19 pm

    References


    [1] N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , 1 , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)
    [2] D.A. Raikov, "Vector spaces" , Noordhoff (1965) (Translated from Russian)
    [3] M.M. Day, "Normed linear spaces" , Springer (1958)
    [4] R.E. Edwards, "Functional analysis: theory and applications" , Holt, Rinehart & Winston (1965)
    [5] P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958)
    [6] I.M. Glazman, Yu.I. Lyubich, "Finite-dimensional linear analysis: a systematic presentation in problem form" , M.I.T. (1974) (Translated from Russian
    farao
    Asmaa Mahmoud
    Asmaa Mahmoud
    Site Administrator
    Site Administrator


    انثى
    عدد الرسائل : 982
    العمر : 37
    Location : egypt / Giza
    Job/hobbies : math teacher
    Skills/Courses : thinking
    Mood : اخيرا موضوع رياضى vector space 9jerrp9
    الأوسمة : اخيرا موضوع رياضى vector space 56329909uu9
    تاريخ التسجيل : 27/03/2008

    m12 رد: اخيرا موضوع رياضى vector space

    مُساهمة من طرف Asmaa Mahmoud الإثنين 21 يوليو 2008, 10:22 pm

    gamed ya shady elmodo3 gamed gedan
    thank's alot

      مواضيع مماثلة

      -

      الوقت/التاريخ الآن هو الأحد 12 مايو 2024, 1:44 am